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Critical gradient behavior in DIlI-D suggests that quasilinear

modeling is a viable modeling tool for fast ion relaxation

*  Fully nonlinear modeling of fast ion
interaction with Alfvénic modes in a
realistic tokamak is numerically

DIII-D critical gradient experiments
- stiff, resilient fast ion profiles as beam power varies
-stochastic fast ion transport (mediated by

overlapping resonances) gives credence in using a expensive
quasilinear approach Fast-lon Transport
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Early development of broadened quasilinear theory

The broadening of resonances is a ubiquitous phenomenon in physics (e.g., in atomic spectra)
* In plasma physics, broadened strong turbulence theories for dense spectra have been developed
(e.g., Dupree, Phys. Fluids 1966);

For beam-plasma interaction in a tokamak, consider canonical
variables of actions Jand angles . In a tokamak, .J is a combination ¢ =0H, (J) /0] =Q(J)
of (€, Py, 1)

The line broadening model (5 (Q) — R (Q)): d |wg{2 Jdt = 2 (v (t) — ) |wb|

af (Q,t) m 0 ant -
ot 2@9[ ’@ ]—CU‘?FO] o= [* g@m

e R isan arbitrary resonance function (usually taken as in flat-top form) with f_oo R(Q)dQ = 1
* @y is the trapping (bounce) frequency at the elliptic point (proportional to square

root of mode amplitude) H. Berk, B. Breizman, J. Fitzpatrick, and H.
Wong, Nucl. Fusion 35, 1661 (1995).
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The overlapping of resonances lead to losses due to

global diffusion

« Designed to address both regimes of isolated and overlapping resonances

— the fast ion distribution function relaxes while self-consistently evolving the amplitude of modes
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Determining the parametric dependencies of the

broadening from single mode saturation levels

The broadening is assumed with the parametric form A2 = awy, + b ¢ where the
coefficients aand b are determined in order to enforce QL theory to replicate known
nonlinear saturation levels:

1/4

Limit near marginal stability3 wp = 1.18vq (M)
YLO

> b=3.1

1/3
Limit far from marginal stability* wp = 1.2vf (%()7—;%>
> a=2.7

Resonance-broadened quasilinear formalism can cope with both situations of isolated
and overlapping modes

@PPR 3H. L. Berk et al. Plasma Phys. Rep, 23(9), 1997 “H. L. Berk and B. N. Breizman. Phys. Fluids B, 2(9), 1990
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Broadening is adjusted to replicate analytical predictions

for the mode saturation amplitude of single modes

Definitions: initial linear growth rate 7L, mode damping rate Vd and trapping (bounce)
frequency wy(proportional to square root of mode amplitude)

Collisionless case Collisional cases
* *
« Close to marginal * Far from marginal
* Undamped case stability: 1> o, stability: w;, > v
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The Resonance-broadened quasilinear (RBQ) code: a

reduced, yet realistic approach to fast ion transport
[Gorelenkov, Duarte, Podesta and Berk, NF 2018]

Workflow:

-background plasma profiles read from the TRANSP code
-eigenstructure calculated by the NOVA code

-damping rates and multi-dimensional resonance structure calculated by
the NOVA-K code

- Classical, no modes
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The remainder of this talk shows how to obtain a physics-based resonance function in a self-consistent form
®)PPPL
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First-principle analytical determination of the

collisional resonance broadening — part |

vi (Fo — f)
Start with the kinetic equation: ﬁ ﬁ 2 i ﬁ _ V3. 0110% (f — Fy) /022
8t+98¢+R6<wbe )8Q_C[f’FO] (

from collisions, turbulence,...)

Periodicity over the canonical angle allows the distribution to be written as a Fourier series:
w .
o, 0t) = Fo (D)4 fo (L) + X (fn (1) €™ + c.c.)
n=1

Near marginal stability, a perturbation theory can be developed in orders of w%/u%)scatt

which leads to the ordering |F}| > f{(l)‘ > |3 f§(2)’. When memory effects are weak,
ie., VK,scatt/ (VL,O —va) > 1,
2
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First-principle analytical determination of the

collisional resonance broadening — part Il

0.4 VscattRscatt (@)

When decoherence is strong, the distribution function has

no angle dependence: 0.3
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Self-consistent formulation of collisional quasilinear transport

theory near threshold

of (t) =7 O OFf (O,
f(at = 200 [’ b’ R(Q fa(Q )]:C[f,Fo]

t) = § [ 7o ARG d|w]” fdt =2 (ve (6) = 70) [} ]

A QL theory naturally emerges when considering kinetic theory near threshold when
collisions occur at a time scale faster than the phase mixing time scale.

 The QL plasma system automatically replicates the nonlinear growth rate and the
wave saturation levels calculated from full kinetic theory near marginality, with a
rather complex time-delayed integro-differential equation (Berk, Breizman and
Pekker, Phys. Rev. Lett. 1996) |w, ,o;| = 8/4 (1 — y4/vp.0)"*

VK

d t t
o ws = (yr — va)ws(t) — % f/z dt' (t — t’)zwﬁ(t’)f dty exp[—v(2t — ' — t))] wi(t))wi(t' + 1, — 1)
t t—t
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* A systematic QL theory has been derived from first principles near an instability threshold, where the
collisional resonance broadening functions emerge spontaneously

* The derivation indicates that QL theory is applicable to a single discrete resonance (with no overlap),
provided that stochasticity is large enough, as well as the usual overlapping regime

* A major arbitrariness of collisional QL modeling (the shape of the resonance functions) has been removed

* The QL system (with the calculated broadening functions) systematically recovers the mode saturation
levels for near-threshold plasmas previously calculated from nonlinear kinetic theory

* Resonance functions are now being implemented into the Resonance Broadening Quasilinear (RBQ) code

The use of the obtained resonance functions implies that fundamental features of nonlinear theory
are automatically built into broadened QL theory

Duarte, Gorelenkov, White & Berk, “The collisional resonance function
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For the future: work oriented along the lines of

the SciDAC ISEP project

2D implementation in RBQ
More validation exercises
Verification of new physics with ORBIT: saturation levels, timescale for mode evolution, broadening...

Inclusion of zonal flows?
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Verification: analytical collisional mode evolution near

threshold

Amplitude A vs time t for the full cubic equation
(green) and the analytical solution (black)

* Near marginal stability, the wave amplitude

evolution is governed by [Berk, Breizman and 20l b)
Pekker, PRL 1996] 40 ~
30
L~ A) - 3 [ drH{ [ dzz? At - 2)x
- i 10f -
X fot ’ dye‘”gffZQ(Qz/3+y)A(t —z—y)A*(t — 2z — y)} 0 ’
‘?eff=5
* An approximate analytical solution is found when : oL . .
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@PPPL [Duarte & Gorelenkov, NF 2019] 14

N e Vinicius Duarte, “First-principle formulation of resonance broadened quasilinear theory near an instability threshold”




e same form of the function calculated by Dupree [T. H. Dupree, Phys.
Fluids 9, 1773 (1966)] in a different context, namely in the study of
strong turbulence theory, where a dense spectrum of fluctuations
diffuse particles away from their free-streaming trajectories. In that
case, the cubic term in the argument of the exponential is
proportional to a collisionless diffusion coefficient.

* the reduction of reversible equations of motion into a diffusive
system of equations that governs the resonant particle dynamics
without detailed tracking of the ballistic motion

* The collisional broadening of resonance lines is a universal
phenomenon in physics (e.g., atoms emission/absorption spectral
profile in atomic physics)
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